51 research outputs found

    Matrilines in Neolithic cattle from Orkney, Scotland reveals complex husbandry patterns of ancestry

    Get PDF
    mtDNA, isotopic and archaeozoological analyses of cattle teeth and bones from the Late Neolithic site of Links of Noltland, Orkney, Scotland revealed these animals followed similar grazing regimes but displayed diverse genetic origins and included one cattle skull that carried an aurochs (wild cattle) genetic haplotype. Morphometric analyses indicate the presence of some cattle larger than published dimensions of Neolithic domestic cattle. Several explanations for these finding are possible but may be the evidence of a complex pattern of domestic cattle introductions into Neolithic Orkney and interbreeding between domestic and wild cattle

    Intraspecific comparison of Phanerochaete chrysosporium strains peroxidase production, pollutant degradation and mycelial differentiation

    Get PDF
    The wood-degrading basidiomycete, Phanerochaete chrysosporium, has been studied as a model organism in elucidating the mechanisms and pathways enabling this white-rot fungus to degrade recalcitrant lignin. These same mechanisms are implicated in the mineralisation of environmentally persistent, toxic phenolic chemicals. For this reason, P. chrysosporium has been exploited in a number of environmentally sound technologies, including the degradation of the indigestible lignin component in agricultural waste for the generation of digestible animal feedstocks or high sugar content raw materials for ethanol production; brightening processes in the pulp and paper industry; the detoxification and decolourisation of industrial effluents; and the bioremediation of hazardous waste sites. The improvement of these technologies is dependant on ongoing research involving strain selection, strain development using genetic engineering approaches and process development. Strain improvement using non-recombinant methods is beneficial in that it does not limit the inherent robustness observed amongst natural variants. In this research, through a breeding programme, ten P.chrysosporium sibling strains were screened for variable ligninase activities and pollutant degradation capabilities in order to further describe previously identified differences between these organisms. A conventional stationary liquid culture technique was effectively miniaturised from 10 ml flask cultures to a 96-well microtitre plate format, for the assessment of multigenic traits amongst sibling strains. Using the 96-well microtitre plate method, the relationships between P. chrysosporium growth kinetics, peroxidase production, pollutant sensitivity and pollutant degradation was explored. Significant correlations were primarily associated with P. chrysosporium growth [P 0.05]. These results imply that differences in the biosynthetic pathways for biomass accumulation in sibling strains play a significant role in the intraspecific variation observed in pollutant sensitivity, pollutant degradation, and enzyme production. Categorical analysis of intraspecific differences was assessed according to four criterions. These included growth, extracellular peroxidase activities, tolerance to toxic pollutants and the biodegradation of model pollutants. Sibling strains showing the most variable responses in three or more of the selective criterion were recommended for further studies. These strains include P. chrysosporium ME446, BS 2.52, BS 13, BS 17, BS 18, and BS 24. Interestingly, BS 2.52 (a dikaryotic strain generating from the crossing of two haploid progeny) showed significantly lower degradation capabilities than the wildtype parent strain ME446. The inherited variability observed between sibling strains is to be further explored through proteome and transcriptome analysis and genetic linkage studies aimed at describing the mechanisms or pathways conferring tolerance to or degradation of environmental pollutants. In examining fewer organisms at this next level, the number of replicates examined can be increased and thus the power of detection of experimental procedures improved, enabling the detection of multigenic traits amongst genetically related organisms. Growth was shown to play a significant role in the intraspecific differences detected in pollutant sensitivity and degradation between sibling strains. Little is known about the mechanism of growth and differentiation, or the role of differentiation in regulating the lignolytic activity in this organism. The membrane gradostat bioreactor and a unique plug-flow membrane bioreactor were evaluated as novel tools with which to further explore the relationship between secondary metabolism, pollutant degradation and biofilm development in sibling strains. High yield MnP production at levels as high as 1478.8 U.l-1 was achieved using a laboratory scale membrane gradostat bioreactor. Furthermore, extensive mycelial differentiation and tissue formation are reported for P. chrysosporium in both the membrane gradostat bioreactor and plug-flow membrane bioreactor. Intraspecific differences in the extent of this differentiation were observed in strains ME446, BS 13, BS 17 and BS 26 cultured using the membrane gradostat bioreactor, highlighting the potential of these techniques as a platform for future strain improvement strategies

    Mammals in Late Neolithic Orkney (with reference to mammal bone recovered from Links of Noltland, Westray)

    Get PDF
    Excavation of thirty skulls, twenty-eight cattle and two sheep from the foundation course of a Late Neolithic structure at Links of Noltland (LON), Structure 9, is the starting point for this thesis, which investigates the economic and socio-cultural relationships of cattle and other mammals on Orkney communities between 3000 and 2500 BC. The LON settlement was located on a machair plain in Westray, the most N-W island within the Orkney archipelago (HY 428 493). Male and female cattle skulls were inter-mixed within the LON foundation course so a “bull cult” is not represented. The sequence from living skulls to skulls “animating the building is (i) breed/acquire (ii) nurture (iii) cull/butcher (iv) consume (v) transform to object (vi) curate (vii) deposit. A skull deposit infilling an internal passageway from another LON, Structure 18, is compared and contrasted with the Structure 9 foundation deposit. Special treatment of cattle skulls from a wide range of European and Near-East sites is also reviewed to emphasise the widespread use of this symbol during the Neolithic period. Orkney was separated from mainland Scotland prior to the establishment of the LON settlement so consideration is given to modes of arrival for mammals and their impact on this depauperate archipelago. Cattle and sheep dominated the domestic mammal remains examined, pig and dog were rare and goat and horse absent. The most abundant non-domestic mammals were red deer and Orkney voles, but otters and sea mammals were also present in low numbers. Genetic studies indicate that one cattle skull carried genetic material from aurochs, wild cattle. To date there is sparse evidence of interbreeding between wild aurochs and Neolithic domesticated cattle in Europe and none in Britain. The alterative explanation that aurochs were already present on Orkney during the Neolithic is explored. Articulated red deer deposits from LON were also examined. Although previous publications explored the possibility that these deposits are “ritual” other possible explanations for these deposits are outlined. No parallels were noted between the cattle skull and articulated red deer deposits, but the importance of antler for practical and symbolic use in Neolithic Orkney may be under-estimated. Stature of cattle remained relatively stable during the Mid to Late Neolithic in Orkney but underwent diminution by the Iron Age. A similar, but less marked reduction was also noted for sheep, but red deer already had small stature compared with early Holocene mainland Scotland red deer. The thesis concludes that cattle, sheep and red deer were of fundamental importance to the Neolithic society of Orkney, providing surplus food, tools and possibly traction, to support an increasingly sophisticated Neolithic society undertaking construction of complex structures and monuments. In addition, cattle fulfilled an important role in their cultural and spiritual life

    'Ava’: a Beaker-associated woman from a cist at Achavanich, Highland, and the story of her (re-) discovery and subsequent study

    Get PDF
    This contribution describes the discovery and subsequent investigation of a cist in a rock-cut pit at Achavanich, Highland. Discovered and excavated in 1987, the cist was found to contain the tightly contracted skeletal remains of a young woman, accompanied by a Beaker, three flint artefacts and a cattle scapula. Initial post excavation work established a date for the skeleton together with details of her age and sex, and preliminary pollen analysis of sediments attaching to the Beaker was undertaken. The findings were never fully published and, upon the death of the excavator, Robert Gourlay, the documentary archive was left in the Highland Council Archaeology Unit. Fresh research in 2014–17, initiated and co-ordinated by the first-named author and funded by the Society of Antiquaries of Scotland with assistance from National Museums Scotland, the Natural History Museum and Harvard Medical School, has produced a significant amount of new information on the individual and on some of the items with which she was buried. This new information includes two further radiocarbon dates, a more detailed osteological report, isotopic information pertaining to the place where she had been raised and to her diet, histological information on the decomposition of her body, and genetic information that sheds light on her ancestry, her hair, eye and skin colour and her intolerance of lactose. (This is the first time that an ancient DNA report has been published in the Proceedings.) Moreover, a facial reconstruction adds virtual flesh to her bones. The significance of this discovery within the Chalcolithic to Early Bronze Age of this part of Scotland is discussed, along with the many and innovative ways in which information on this individual, dubbed ‘Ava’, has been disseminated around the world.Copyright © 2018 rests with the Society and the individual authors. Except where otherwise noted, this work is licensed under CreativeCommons Attribution-NonCommercial-No Derivatives licence.https://creativecommons.org/licenses/by-nc-nd/4.0/ The permission to reproduce the Society's copyright-protected ma-terial does not extend to any material which is identified as being the copyright of a third party. Authorisation to reproduce such material must be obtained from the copyright holders concerned. The attached file is the published pdf

    Commercial AHAS-inhibiting herbicides are promising drug leads for the treatment of human fungal pathogenic infections

    Get PDF
    The increased prevalence of drug-resistant human pathogenic fungal diseases poses a major threat to global human health. Thus, new drugs are urgently required to combat these infections. Here, we demonstrate that acetohydroxyacid synthase (AHAS), the first enzyme in the branched-chain amino acid biosynthesis pathway, is a promising new target for antifungal drug discovery. First, we show that several AHAS inhibitors developed as commercial herbicides are powerful accumulative inhibitors of Candida albicans AHAS (K-i values as low as 800 pM) and have determined high-resolution crystal structures of this enzyme in complex with several of these herbicides. In addition, we have demonstrated that chlorimuron ethyl (CE), a member of the sulfonylurea herbicide family, has potent antifungal activity against five different Candida species and Cryptococcus neoformans (with minimum inhibitory concentration, 50% values as low as 7 nM). Furthermore, in these assays, we have shown CE and itraconazole (a P450 inhibitor) can act synergistically to further improve potency. Finally, we show in Candida albicans-infected mice that CE is highly effective in clearing pathogenic fungal burden in the lungs, liver, and spleen, thus reducing overall mortality rates. Therefore, in view of their low toxicity to human cells, AHAS inhibitors represent a new class of antifungal drug candidates

    Amyloid Plaques Beyond Aβ: A Survey of the Diverse Modulators of Amyloid Aggregation

    Get PDF
    Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer’s disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which interact with the Aβ peptide at various junctures during aggregation, from monomer to cross-β amyloid fibrils. However, even in isolation, a multitude of factors including protein purity, pH, salt content, and agitation affect Aβ fibril formation and deposition, often producing complicated and conflicting results. The failure of numerous inhibitors in clinical trials for AD suggests that a detailed examination of the complex interactions that occur during plaque formation, including binding of carbohydrates, lipids, nucleic acids, and metal ions, is important for understanding the diversity of manifestations of the disease. Unraveling how a variety of key macromolecular modulators interact with the Aβ peptide and change its aggregation properties may provide opportunities for developing therapies. Since no protein acts in isolation, the interplay of these diverse molecules may differentiate disease onset, progression, and severity, and thus are worth careful consideration

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)
    corecore